Bessason, B., Eiriksson, G., Thorarinsson, O., Thorarinsson, A., and Einarsson, Due south.: Automated detection of avalanches and debris flows by seismic methods, J. Glaciol., 53, 461–472, 2007. a, b, c, d, due east
Beyreuther, Yard., Hammer, C., Wassermann, J., and Ohrnberger, M.: Constructing a Subconscious Markov Model based convulsion detector: application to induced seismicity, Geophys. J. Int., 189, 602–610, 2012. a, b
Caplan-Auerbach, J. and Huggel, C.: Precursory seismicity associated with frequent, large ice avalanches on Iliamna volcano, Alaska, USA, J. Glaciol., 53, 128–140, https://doi.org/10.3189/172756507781833866, 2007. a
Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., and Loew, S.: Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models, J. Geophys. Res.-Globe, 121, 351–371, 2016. a
Faillettaz, J., Funk, Thousand., and Vincent, C.: Avalanching glacier instabilities: Review on processes and early warning perspectives, Rev. Geophys., 53, 203–224, https://doi.org/x.1002/2014RG000466, 2015. a
Faillettaz, J., Or, D., and Reiweger, I.: Codetection of acoustic emissions during failure of heterogeneous media: New perspectives for natural gamble early on warning, Rev. Geophys., 43, 1075–1083, https://doi.org/10.1002/2015GL067435, 2016. a
Hammer, C., Beyreuther, M., and Ohrnberger, M.: A seismic-result spotting system for Volcano fast-response systems, B. Seismol. Soc. Am., 102, 948–960, 2012. a, b, c, d, east
Hammer, C., Ohrnberger, K., and Fäh, D.: Classifying seismic waveforms from scratch: a case study in the tall environment, Geophys. J. Int., 192, 425–439, 2013. a, b
Hammer, C., Fäh, D., and Ohrnberger, M.: Automated detection of wet-snowfall avalanche seismic signals, Nat. Hazards, 86, 601–618, https://doi.org/ten.1007/s11069-016-2707-0, 2017. a, b, c, d, e
Harrison, J.: Seismic signals from avalanches, Armstrong and Ives (Eds.), Avalanche release and snow characteristics. Institute of Arctic and Alpine Inquiry, Academy of Colorado, Occasional Paper No. 19, 145–150, 1976. a, b
Heck, Thou. and van Herwijnen, A.: Automatic detection of avalanches; WSL Institute for Snow and Avalanche Research SLF, https://doi.org/10.16904/envidat.29, 2018.
Kishimura, K. and Izumi, K.: Seismic signals induced by snow avalanche period, Nat. Hazards, 15, 89–100, 1997. a
Lacroix, P., Grasso, J.-R., Roulle, J., Giraud, Yard., Goetz, D., Morin, Southward., and Helmstetter, A.: Monitoring of snowfall avalanches using a seismic array: Location, speed estimation, and relationships to meteorological variables, J. Geophys. Res.-Earth, 117, F01034, https://doi.org/10.1029/2011JF002106, 2012. a, b, c
Leprettre, B., Navarre, J., and Taillefer, A.: First results from a pre-operational system for automated detection and recognition of seismic signals associated with avalanches, J. Glaciol., 42, 352–363, 1996. a, b, c, d, e, f
Leprettre, B., Martin, North., Glangeaud, F., and Navarre, J.: Iii-Component Signal Recognition Using Time, Fourth dimension–Frequency, and Polarization Information – Application to Seismic Detection of Avalanches, IEEE T. Betoken Process., 46, 83–102, 1998. a, b
Marchetti, E., Ripepe, Grand., Ulivieri, G., and Kogelnig, A.: Infrasound assortment criteria for automatic detection and front end velocity estimation of snow avalanches: towards a real-time early-warning system, Nat. Hazards, 15, 2545–2555, 2015. a
Ohrnberger, M.: Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia, PhD thesis, 19–58, 71–112, 2001. a, b, c
Pérez-Guillén, C., Sovilla, B., E. Suriñach, Eastward., Tapia, One thousand., and Köhler, A.: Deducing avalanche size and catamenia regimes from seismic measurements, Common cold Reg. Sci. Tech., 121, 25–41, 2016. a
Rabiner, L.: A tutorial on Hidden Markov Models and selected application in speech recognition, P. IEEE, 77, 257–286, 1989. a
Riggelsen, C. and Ohrnberger, 1000.: A Motorcar Learning Approach for Improving the Detection Capabilities at 3C Seismic Stations, Pure Appl. Geophys., 171, 395–411, https://doi.org/10.1007/s00024-012-0592-three, 2014. a
Rubin, M., Army camp, T., van Herwijnen, A., and Schweizer, J.: Automatically detecting avalanche events in passive seismic data, IEEE International Conference on Car Learning and Applications, 1, xiii–twenty, 2012. a, b, c, d, e
Sabot, F., Naaim, G., Granada, F., Suriñach, Due east., Planet, P., and Furada, G.: Study of barrage dynamics by seismic methods, image-processing techniques and numerical models, Ann. Glaciol., 26, 319–323, 1998. a, b
Schaerer, P. A. and Salway, A. A.: Seismic and impact-pressure monitoring of flowing avalanches, J. Glaciol., 26, 179–187, 1980. a
St. Lawrence, Westward. and Williams, T.: Seismic signals associated with avalanches, J. Glaciol., 17, 521–526, 1976. a
Suriñach, E., Sabot, F., Furdada, G., and Vilaplana, J.: Written report of seismic signals of artificially released snow avalanches for monitoring purposes, Phys. Chem. Earth Pt. B, 25, 721–727, 2000. a
Suriñach, Due east., Furdada, G., Sabot, F., Biescas, B., and Vilaplana, J.: On the characterization of seismic signals generated past snow avalanches for monitoring purposes, Ann. Glaciol., 32, 268–274, https://doi.org/10.3189/172756401781819634, 2001. a
Suriñach, E., Vilajosana, I., Khazaradze, Chiliad., Biescas, B., Furdada, G., and Vilaplana, J. M.: Seismic detection and characterization of landslides and other mass movements, Nat. Hazards Earth Syst. Sci., 5, 791–798, https://doi.org/10.5194/nhess-5-791-2005, 2005. a
Thüring, T., Schoch, M., van Herwijnen, A., and Schweizer, J.: Robust snowfall avalanche detection using supervised machine learning with infrasonic sensor arrays, Cold Reg. Sci. Technol., 111, 60–66, 2015. a
van Herwijnen, A. and Schweizer, J.: Seismic sensor array for monitoring an avalanche beginning zone: design, deployment and preliminary results, J. Glaciol., 57, 257–264, 2011a. a, b, c, d, e, f, g, h, i
van Herwijnen, A. and Schweizer, J.: Monitoring avalanche activeness using a seismic sensor, Cold Reg. Sci. Technol., 69, 165–176, 2011b. a, b, c, d, eastward, f
van Herwijnen, A., Dreier, 50., and Bartelt, P.: Towards a basic avalanche characterization based on the generated seismic signal, Proceedings 2013 International Snowfall Scientific discipline Workshop, Grenoble, France, 1033–1037, 2013. a, b
van Herwijnen, A., Heck, M., and Schweizer, J.: Forecasting snow avalanches by using highly resolved avalanche activity data obtained through seismic monitoring, Common cold Reg. Sci. Technol., 132, 68–80, 2016. a, b, c, d, due east, f, chiliad
Vilajosana, I., Khazaradze, G., Surinach, E., Lied, East., and Kristensen, Chiliad.: Snow barrage speed determination using seismic methods, Cold Reg. Sci. Technol., 49, 2–10, https://doi.org/10.1016/j.coldregions.2006.09.007, 2007a. a
Vilajosana, I., Suriñach, E., Khazaradze, G., and Gauer, P.: Snowfall barrage energy estimation from seismic signal analysis, Cold Reg. Sci. Technol., l, 72–85, https://doi.org/ten.1016/j.coldregions.2007.03.007, 2007b. a
Wilks, D. Southward.: Statistical methods in the atmospheric sciences, Vol. 100, Academic press, 2011. a
Zobin, V. One thousand., Plascencia, I., Reyes, Chiliad., and Navarro, C.: The characteristics of seismic signals produced by lahars and pyroclastic flows: Volcán de Colima, México, J. Volcanol. Geoth. Res., 179, 157–167, https://doi.org/10.1016/j.jvolgeores.2008.11.001, 2009. a
0 Response to "Automatic Detection of Rockslides Hidden Markov Models Review"
Post a Comment